
Effect of a frictional force on the Fermi–Ulam model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys. A: Math. Gen. 39 11399

(http://iopscience.iop.org/0305-4470/39/37/005)

Download details:

IP Address: 171.66.16.106

The article was downloaded on 03/06/2010 at 04:49

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/39/37
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 39 (2006) 11399–11415 doi:10.1088/0305-4470/39/37/005

Effect of a frictional force on the Fermi–Ulam model

Edson D Leonel1 and P V E McClintock2
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Abstract
The dynamical properties of a classical particle bouncing between two rigid
walls, in the presence of a drag force, are studied for the case where one wall is
fixed and the other one moves periodically in time. The system is described in
terms of a two-dimensional nonlinear map obtained by solution of the relevant
differential equations. It is shown that the structure of the KAM curves and
the chaotic sea is destroyed as the drag force is introduced. At high energy, the
velocity of the particle decreases linearly with increasing iteration number, but
with a small superimposed sinusoidal modulation. If the motion passes near
enough to a fixed point, the particle approaches it exponentially as the iteration
number evolves, with a speed of approach that depends on the strength of the
drag force. For a simplified version of the model it is shown that, at low energies
corresponding to the region of the chaotic sea in the non-dissipative model, the
particle wanders in a chaotic transient that depends on the strength of the drag
coefficient. However, the KAM islands survive in the presence of dissipation.
It is confirmed that the fixed points and periodic orbits go over smoothly into
the orbits of the well-known (non-dissipative) Fermi–Ulam model as the drag
force goes to zero.

PACS numbers: 05.54.−a, 05.45.Ac, 05.45.Pq

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A class of one-dimensional time-dependent systems that has been exhaustively investigated
in recent years is that related to the so-called one-dimensional Fermi accelerator model. The
latter was originally proposed by Fermi [1] in order to describe the acceleration of cosmic rays.
It provides a mechanism through which charged particles can be accelerated by collisions with
time-dependent magnetic fields. The model was subsequently studied in different versions and
using a number of different approaches [2–6]. One of them, known as the Fermi–Ulam model
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(FUM), considers the dynamics of a classical particle bouncing between two rigid walls, one
of which is fixed and the other moves in time. The main result for periodic oscillation is that
the phase space presents Kolmogorov–Arnol’d–Moser (KAM) islands surrounded by a chaotic
sea. Unlimited energy growth (i.e., the needed condition for observing Fermi acceleration)
is not, however, observed because the phase space exhibits a set of invariant spanning curves
[7]. An alternative version of this model proposed by Pustylnikov [8], often referred to as a
bouncer, consists of a classical particle falling in a constant gravitational field, on a moving
platform. Its most important property is that, in contradistinction to the FUM, depending on
both the initial conditions and control parameters, there is no bound on the energy gained
by the bouncing particle. This special difference between the models was later clarified by
Lichtenberg, Lieberman and Cohen [9]. We have recently proposed [10] a hybrid version
of the Fermi–Ulam accelerator and bouncer models. The system behaves not exclusively as
pure Fermi–Ulam nor as a pure bouncer model, but as a combination of the two. We used
a simplified version of the model to obtain analytically the conditions for which properties
that are individually present in the Fermi–Ulam (high energy invariant spanning curves) and
bouncer models (low energy invariant spanning curves) but that come out and coalesce together
in the hybrid version of the model. The corresponding quantum versions of both the bouncer
model and FUM have also been studied [11–15].

The special interest attached to studying these one-dimensional classical systems is that
they are completely integrable for zero external time-dependent forcing, but non-integrable
when the external forcing is switched on. Furthermore, they allow direct comparison of
theoretical predictions with experimental results [16–18]. Such systems present a very rich
phase space structure. Depending on the values of the control parameters, as well as on
the initial conditions, periodic, quasi-periodic and chaotic behaviour all can be observed.
This mixed phase space structure has also been observed for one-dimensional time-dependent
potentials [19–24] and for billiards with static boundaries [25–28], and is indeed generic for
non-degenerate Hamiltonian systems. When time-dependent boundaries are considered for
such billiards, however, the scenario that arises is quite different. One of the main questions
addressed in studies of such problems is how the energy of the particle varies with time and,
in particular, whether or not the system can exhibit the phenomenon of Fermi acceleration.
A discussion of these very interesting questions, together with specific examples, can be
found in [29] where the authors conjectured that: ‘Chaotic dynamics of a billiard with a
fixed boundary is a sufficient condition for Fermi acceleration in the system when a boundary
perturbation is introduced’. Recently, the well-known annular billiard has been investigated
[30, 31] to try and verify this conjecture and to enlarge the number of cases to which it is
applicable.

It is also interesting to investigate the effects of dissipation in these systems. Different
kinds of perturbation can be introduced including: (i) a loss of energy at each impact, through
inelastic collisions with the moving wall or (ii) the effect of a frictional (drag) force. For the
bouncer model, with the dissipation introduced via inelastic collisions, a variety of interesting
results were found [32–35], while the version with a frictional force was carefully analysed
in [36, 37]. For the FUM with inelastic collisions, remarkable effects of the dissipation on its
dynamics and other properties were discussed [38–40] and, in particular, crisis events were
observed and characterized [41]. A more complex case consisting of a combination of the
FUM with a half-stadium was discussed [42]. However, an important question that, to our
knowledge, has not yet been addressed relates to what happens with the asymptotic behaviour
of individual initial conditions to the FUM when—as is so often the case in practice—a
frictional force is present. This seems to be a lacuna for both the complete and simplified
versions of the FUM.
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In this paper, we study a dissipative version of the FUM. It consists of a classical particle
bouncing between two rigid walls in the presence of a drag force. As usual, we suppose one
wall to be fixed and the other to move periodically in time. We characterize the dynamics of
this system by using a two-dimensional nonlinear map, and we consider it in two different
versions: (i) complete and (ii) simplified. The map is obtained via the solution of differential
equations. We will show that, under the perturbation of the drag force, the dynamics of this
system becomes very different from that of the non-dissipative case and that, furthermore,
the nature of the differences varies depending on the region considered. In the high energy
domain of both versions, where it is well known that invariant spanning curves exist in the
non-dissipative case, the velocity of the particle decreases linearly with increasing iteration
number. In the low energy domain, within the region corresponding to the chaotic sea for the
non-dissipative case, the particle experiences a chaotic transient that depends on the magnitude
of the drag force coefficient. For these regions, the asymptotic behaviour of the particle is
to come to rest. Thus, the drag force dissipates all of the particle’s initial energy. We will
find, however, that the dynamics of the particle near fixed points differs markedly between the
two versions of the model. For the complete version, the particle approaches the fixed point
exponentially as the iteration number evolves, at a rate depending on the strength of the drag
coefficient. In the simplified version, however, the KAM islands survive the perturbation. In
particular, we will show that the fixed points and the corresponding map go over smoothly to
the fixed points and map of the non-dissipative FUM. A short letter reporting the observation
of area preservation within the simplified FUM has already been published [43].

This paper is organized as follows. In section 2, we provide all details needed to construct
the map describing the dynamics of the complete version and we discuss the numerical results
obtained from it. Section 3 describes some properties of the simplified version, presents a
connection with the non-dissipative FUM and also reports the numerical results. Finally, we
summarize and draw conclusions in section 4.

2. Map derivation for the complete version of the FUM under a frictional force

The model thus consists of a classical particle of mass m, confined between and bouncing
elastically between a wall fixed at x = l and a wall moving periodically in time according to the
equation xw(t) = ε cos(ωt). The parameter ε is the amplitude of oscillation while ω denotes
the angular frequency. The particle experiences a drag force, equivalent to being immersed in
a fluid of viscosity η′, e.g. a gas, that we suppose to be unaffected by the motion of the moving
wall. The dynamics of this model is described via a map T that gives the velocity of the
particle immediately after a collision with the moving wall as well as the time of that collision,
i.e. (vn+1, tn+1) = T (vn, tn). Before starting to construct the map, we first discuss the initial
conditions. We suppose that at a time t = tn and after suffering a collision with the moving
wall the particle has initial velocity v = vn and its position is given by xp(tn) = ε cos(ωtn).
The velocity and position of the particle are completely specified by the solution of Newton’s
second law

∑
F = ma. In this case, we assume that

∑
F = −η′v where a = dv/dt is the

acceleration. The differential equation that must be solved is therefore

−η′v = m
dv

dt
. (1)

We recommend the interested reader who want to follow all the steps of the mapping
derivation to look at appendix A. Using dimensionless and more convenient variables, we
define Vn = vn/(ωl), δ = η/ω, ε = ε/l, where η = η′/m, and also measure time in terms
of the number of oscillations of the moving wall, i.e. φn = ωtn. Using these variables, the
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mapping for the general case may then be rewritten as

T :

{
Vn+1 = V ∗

n e−δφc − 2ε sin(φn+1)

φn+1 = φn + �Tn mod 2π,
(2)

where V ∗
n and �Tn are given by different expressions according to the following conditions:

(1) Multiple collision. In this case, �Tn = φc and V ∗
n = −Vn. The term φc is obtained as the

smallest solution of the function G(φc) in the interval φc ∈ (0, 2π ], given by

G(φc) = ε cos(φn + φc) − ε cos(φn) +
V ∗

n

δ
(1 − e−δφc ). (3)

(2) Single collision. For this case, we have that �Tn = φT + φc and V ∗
n = Vn − 2δ + δε(1 +

cos(φn)). The term φT is given by

φT = −1

δ
ln

[
1 − δ

Vn

[2 − ε − ε cos(φn)]

]
,

while the term φc is obtained as the smallest solution of the function F(φc) in the interval
φc ∈ [0, 2π ], given by

F(φc) = ε cos(φn + φT + φc) − ε +
V ∗

n

δ
(1 − e−δφc ). (4)

As a consequence of the drag force, the expression for the Jacobian matrix differs from that in
the non-dissipative version. After some algebra, it is possible to show

• that for the multiple collisions (case (1)), we have

det Jcv = e−δφc

[
Vn + ε sin(φn)

Vn+1 + ε sin(φn+1)

]
, (5)

• and that, for case (2),

det Jcv = e−δφc

[
Vn + ε sin(φn)

Vn+1 + ε sin(φn+1)

] [
1 − δ

Vn

[2 − ε − ε cos(φn)]

]
. (6)

The index ‘cv’ denotes the complete version. It is interesting to emphasize that in the
conservative case the determinant of the Jacobian matrix is det J = (Vn + ε sin(φn))/(Vn+1 +
ε sin(φn+1)), as can be seen in [10, 44]. Moreover, we can immediately see that equations (5)
and (6) both imply a contracting area in the phase space. It is also easy to see, however, that
in the limit δ → 0 for the drag coefficient, equations (5) and (6) both lead to recovery of the
result of the FUM. For that limit of δ, it can also be considered as a particular case of the
breathing circle in which a particle is bouncing in diametrical orbits [45].

2.1. Numerical results for the complete version of the problem

We discuss in this section our numerical results for the complete version of the problem. Since
the mapping is area contracting, it is thus to be expected that, as time evolves and the drag force
dissipates the energy of the particle, either of two different things may occur: (i) the particle
may be ‘captured’ by an attracting region (fixed point) related to the corresponding KAM
islands in the non-dissipative case, and then approaches the fixed point asymptotically. Such
capture depends on how close the particle passes to the attracting region or (ii) the drag force
dissipates all the energy of the particle, bringing it to rest. Before discussing the behaviour
of the velocity as a function of iteration number, we first investigate it analytically. For high
velocity, V � 2ε and δ � ε, so that we can rewrite expression (2) for the velocity as

Vn+1 ∼= Vn − 2δ − 2ε sin(φn+1), (7)
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Figure 1. Velocity V as a function of n for the complete version of the FUM under a frictional
force. The control parameters used were ε = 1 × 10−3 and δ = 1 × 10−5. The initial conditions
were V0 = 3 and φ0 = 0. Part (b) is plotted on expanded scales to illustrate the oscillatory
behaviour.

where we have considered the product δε to be negligible. Extending this approximation to
the exponential, we note that the maximum value of φc is φc = 2ε/Vn. In the limit of V � 2ε

and δ � ε, the expression e−δφc → 1. We can then rewrite the iterated equation (7) as

V1 = V0 − 2ε sin(φ1) − 2δ

V2 = V0 − 2ε[sin(φ1) + sin(φ2)] − 4δ

V3 = V0 − 2ε[sin(φ1) + sin(φ2) + sin(φ3)] − 6δ

and then the general expression as

Vn = V0 − 2ε

n∑
i=1

sin φi − 2nδ. (8)

Equation (8) tells us that the velocity of the particle decreases linearly as the iteration number
increases. However, even supposing that φ were uniformly distributed in φ ∈ [0, 2π), so
that the condition yielded 2ε

∑
i sin φi = 0, we would still expect the velocity to oscillate

sinusoidally for a short range of collision with the moving wall, ‘n’, as the velocity decreases.
Such an oscillation is clearly evident in figure 1 (see part (b)) which plots the calculated
velocity as a function of n with the control parameters ε = 1 × 10−3, δ = 1 × 10−5, for the
initial condition V0 = 3 and φ0 = 0. Figure 1(a) shows that the linear decrease in velocity
persists over a large range of n, and figure 1(b) shows the oscillatory velocity on an expanded
ordinate scale for a short range of n. A linear fit gives us a linear coefficient of −2 × 10−5,
which is in complete accord with equation (8). It is interesting to emphasize that, when the
drag coefficient δ → 0, the last term in equation (8) disappears. The invariant spanning curves
then become stable and the velocity of the particle does not decrease as the dynamics evolves.
Moreover, this result is in fact in perfect agreement with that obtained from the determinant
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Figure 2. (a) Behaviour of the average n̄x as a function of proximity to the attracting fixed point
for the complete version of the dissipative model, as trajectories converge to it. (b) The transient
n̄x as a function of the drag coefficient δ.

of the Jacobian matrix in the limit δ → 0. In this limit, we have the condition of phase space
measure preservation and thus the results for the non-dissipative FUM are all recovered.

Now suppose that the particle is captured by an attracting region. We will describe how
it approaches the attracting fixed point as a function of iteration number. We shall consider
the attracting region as being in some sense equivalent to the first KAM island for the non-
dissipative model (cf table 1 for the non-dissipative simplified model and figure 4 for its
dissipative version) although other regions could also be considered. In order to investigate
the asymptotic approach to the attracting fixed point, we first define a set of initial conditions
and then allow the system to evolve in time. We establish a convergency criterion in order to
define the asymptotic approach to the attracting fixed point. The criterion consists in checking
the distance of the particle from the fixed point. We thus define a circle of radius rc = 10−6

and iterate each set of initial condition. If the particle is near enough to the fixed point, say less
than rc, we then save, in an array, the corresponding number of collisions spent until that point
and thus start a different initial condition. After evolving from an ensemble of M different
initial conditions, the average n̄x is given by n̄x = 1/M

∑M
i=1 ni .

Using a set of close initial conditions we can characterize the deviations of the
computational data. Figure 2(a) shows the behaviour of the average number of collisions
with the moving wall, n̄x as a function of proximity to the fixed point for a set of trajectories
approaching it. The horizontal axis represents how far the trajectory is from the fixed point,
a distance defined as r =

√
(Vn − V ∗)2 + (φn − φ∗)2. The coordinates of the fixed point are

represented by (V ∗, φ∗). The error bars denote the standard deviation of a set of 500 different
initial conditions in the range (V0, φ0) = ([0.325, 0.33], π). Each curve in figure 2(a) is fitted
by the function n̄x(r) = A + B ln(r). For δ = 1 × 10−4, we obtain A = −14.6(1) × 103 and
B = −3.22(1) × 103. For the case where δ = 5 × 10−4 we have A = −29.72(2) × 103,
B = −6.376(2)×103 and finally, for δ = 1×10−5, the coefficients are A = −149.1(3)×103

and B = −31.77(3) × 103. Results like those in figure 2(a) allow us to conclude that the
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trajectory approaches the fixed point exponentially as the collisions with the moving wall
evolve. We can also investigate how the trajectory evolves towards an attracting fixed point as
a function of the drag coefficient. Figure 2(b) shows the behaviour of n̄x as a function of the
drag coefficient where we have evolved the simulation up to r < 10−6. We can then describe
such behaviour as

n̄x ∝ δµ. (9)

After doing a power-law fit as those shown in figure 2(b) we obtain µ = −1.000(2). It is easy
to see that, in the limit δ → 0, equation (9) gives us that n̄x → ∞. Note however that, in
this limit of δ, the preservation of the phase space measure must be recovered. We conclude
that two different things can occur, depending on the initial conditions: (i) the particle may
display periodic, or at least quasi-periodic, behaviour or (ii) the particle may exhibit chaotic
behaviour. The result n̄x → ∞ could be interpreted as indicating that convergence to an
attracting fixed point does not occur.

3. A simplified version of the dissipative FUM

Next, we describe a modified form of our dissipative FUM that we refer to as its simplified
version3. We will suppose that both walls are fixed but that, after the particle suffers a collision
with one of them, it exchanges momentum as if the wall was moving. Simplifications of this
kind were found very useful for speeding up numerical simulations two or three decades ago,
when computers were far slower. Such an approach is also useful in facilitating the analytic
treatment. It also enables us to seek generic behaviour that can subsequently be sought in the
complete version of the model.

Several recent works have used such simplifications to describe the dynamical properties
of two-dimensional maps. For example, scaling arguments have been used [46] to characterize
the chaotic sea at low energy for the simplified FUM. One of the tools employed in investigating
the model, the roughness, was derived from surface science [47] and the formalism proposed in
[46] could usefully be applied to billiards (see also [48, 49] for recent results in the simplified
Fermi–Ulam model). In [44], the authors used the simplified version of the FUM to provide a
careful description of the lowest energy invariant spanning curve and its location. The results
are in principle extendable to the complete version of the model. Furthermore, we have used
a similarly simplified version of the hybrid Fermi–Ulam-bouncer model [10] to predict the
existence of invariant spanning curves below the chaotic sea in the low energy region. We
were subsequently able to use the corresponding complete version for observing such curves.
The hybrid model in question behaves neither purely as a FUM, nor as a bouncer, but as a
combination of these two. Simplifications of this kind have also been found useful in relation
to the problem of rippled channels [50–52].

For the non-dissipative case, the complete and simplified versions closely present similar
results except at very low energies, typically V ∼= 2ε. In this limit, it is possible to observe
in the complete model a set of successive collisions that are absent in the simplified version.
As we will discuss, the introduction of this simplification into our dissipative model yields
significantly different asymptotic behaviour for the region related to the fixed points. If we
then consider that both walls are fixed, we immediately see that successive collisions that
are allowed in the complete model cannot occur in the simplified one. In the complete
model, depending on the combination of velocity and phase, it is possible for the particle,
after suffering a collision with the moving wall, to suffer a second successive collision before

3 The simplified FUM was introduced by Lichtenberg and Lieberman and can be found, for example, in [3].
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exiting the collision area, as well as possibly having a negative velocity following the first
such collision. In the simplified model, non-positive velocities are forbidden because they
are equivalent to the particle travelling beyond the wall. In order to avoid such problems, if
after the collision the particle has a negative velocity, we inject it back with the same modulus
of velocity. Such a procedure is effected perfectly by use of a modulus function. Note that
the velocity of the particle is reversed by the modulus function only if, after the collision, the
particle remains travelling in the negative direction. The module function has no effect on the
motion of the particle if it moves in the positive direction after the collision. We stress that
this approximation is valid only for small values of ε. Moreover, it is no longer necessary to
solve both of the functions F(φc) and G(φc). Incorporating these simplifications, the map can
then be written as

T :




Vn+1 = |Vn − 2δ − 2ε sin(φn+1)|

φn+1 = φn − 1

δ
ln

[
1 − 2δ

Vn

]
mod 2π.

(10)

The phase φn+1 is real only if Vn > 2δ. If Vn � 2δ, we can conclude that the particle does
not have enough energy for a further collision. Therefore, the particle comes to rest. We then
obtain the expression of the Jacobian matrix for this map (10), which takes the form

Jsv =
(

∂φn+1

∂φn

∂φn+1

∂Vn

∂Vn+1
∂φn

∂Vn+1
∂Vn

)
, (11)

with coefficients given by

∂φn+1

∂φn

= 1,
∂φn+1

∂Vn

= − 2

V 2
n − 2δVn

,

∂Vn+1

∂φn

= sign[Vn − 2δ − 2ε sin(φn+1)]

[
−2ε cos(φn+1)

∂φn+1

∂φn

]
,

∂Vn+1

∂Vn

= sign[Vn − 2δ − 2ε sin(φn+1)]

[
1 − 2ε cos(φn+1)

∂φn+1

∂Vn

]
,

where the function sign(u) = 1 if u > 0 and sign(u) = −1 if u < 0. The index ‘sv’ denotes
the simplified version.

A careful investigation of the determinant of the Jacobian matrix (equation (11)) shows
that det Jsv = sign[Vn − 2δ − 2ε sin(φn+1)]. This result tell us that, in contrast to the complete
model, it is possible to observe regions of phase space where the area-preserving property
is satisfied. As we will show, however, this result is not applicable throughout the whole of
phase space.

3.1. Properties of the non-dissipative simplified FUM

Before considering the connections between the dissipative and non-dissipative cases, let us
briefly discuss some properties of the simplified FUM (see footnote 3) without dissipation.
Considering the case in which a particle bounces elastically between two rigid walls in the
absence of a drag force and using the optimal variables, the map describing the dynamics of
the simplified FUM is given by


Vn+1 = |Vn − 2ε sin(φn+1)|
φn+1 = φn +

2

Vn

mod 2π.
(12)
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Table 1. Classification of periodic orbits of periods 1 and 2 for the simplified FUM in the absence
of dissipation. We have used the letters H to classify a fixed point as hyperbolic, E as elliptic and
finally P as parabolic.

Period V φ ε Type

1 1
jπ

, j = 1, 2, 3 . . . 0 All H

1 1
jπ

, j = 1, 2, 3 . . . π < 1
j2π2 E

1 1
jπ

, j = 1, 2, 3 . . . π = 1
j2π2 P

1 1
jπ

, j = 1, 2, 3 . . . π > 1
j2π2 H

2 2
jπ

, j = 1, 3, 5 . . . 0, π < 2
j2π2 E

2 2
jπ

, j = 1, 3, 5 . . . 0, π = 2
j2π2 P

2 2
jπ

, j = 1, 3, 5 . . . 0, π > 2
j2π2 H

The phase space for this system exhibits KAM islands surrounded by a chaotic sea that is
limited by an invariant spanning curve in the low energy domain. For high energy, it basically
shows a set of invariant spanning curves. As discussed in [44], the position of the lowest energy
invariant spanning curve can be rescaled for different control parameters and connected to the
standard map (SM) to appear for the same effective control parameter (KFU ≈ 0.97 . . .) at
which the SM undergoes a change from locally to globally stochastic behaviour4. Table 1
shows the classification of periodic orbits for the FUM.

3.2. Connection between the dissipative and non-dissipative cases

The dissipative model must go over into the non-dissipative one when the drag coefficient
δ → 0. In this case, it is easy to see that the first equation of map (10) recovers the first
equation of map (12), i.e.

Vn+1 = lim
δ→0

|Vn − 2δ − 2ε sin(φn+1)|.
Considering the second equation of map (10), we obtain

φn+1 = lim
δ→0

(
φn − 1

δ
ln

[
1 − 2δ

Vn

])
= φn +

2

Vn

. (13)

It is also interesting to characterize how the fixed points of our dissipative model go over
to the fixed points of the non-dissipative model. It is well known that the fixed points and
periodic orbits are obtained by requiring that the conditions φn+i = φn and Vn+i = Vn are
satisfied. The periodicity of the orbit is given by the label i, so i = 1 implies a period-one
orbit, i = 2 gives a period-two orbit and so on. Applying the condition to obtain a period-one
fixed point for both the equations of map (10), we obtain

Vn+1 = Vn − 2δ − 2ε sin(φn+1) = Vn, (14)

φn+1 = φn − 1

δ
ln

[
1 − 2δ

Vn

]
= φn. (15)

Equation (14) yields

Vn = 2δ

1 − e−2πδi
with i = 1, 2, 3 . . . (16)

4 We have used the same notation as the original work [3] although, at that time, stochasticity was frequently referred
as to chaotic behaviour. However, we emphasize that the transition is from locally to globally chaotic behaviour. In
the FUM, we mean by locally that the chaotic behaviour is confined by two different invariant spanning curves.
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Figure 3. (a) The velocity V (n) for ε = 1 × 10−3, δ = 1 × 10−5 for V0 = 1 and φ0 = 0. The
inset shows in more detail how V varies with n near to the KAM island of order i = 1. (b) Details
of a trajectory passing near to a KAM island, plotting V (n) as a function of the phase φ.

and then equation (15) gives us that

φn = 2π − arcsin(δ/ε), (17)

φn = π + arcsin(δ/ε). (18)

Equations (17) and (18) are both real for δ/ε � 1. We can use the coefficients of the Jacobian
matrix (see equation (11)) and analyse the stability of the period-one fixed point. We then
proceed as follows: (i) the fixed point given by equations (16) and (17) can be classified as
hyperbolic for all values of the control parameters ε and δ with condition δ/ε � 1; (ii) for the
fixed point given by equations (16) and (18) we define an auxiliary variable as

ε∗ = 4δ2 e−2πδi

cos(arcsin(δ/ε))[1 − e−2πδi]2
, (19)

and then use it to classify such a fixed point as (a) elliptic if ε < ε∗; (b) parabolic if ε = ε∗

and finally (c) hyperbolic if ε > ε∗.

3.3. Numerical results for the simplified dissipative FUM

We discuss in this section our numerical results for the simplified version of the model. Iterating
the expression for the velocity given by the map (10), we again obtain the same equation (8)
as for the complete model. It may thus be expected that, at high energy, the velocity of the
particle decreases linearly on average, while oscillating sinusoidally as it decreases. Unlike
the complete version, however, the stable KAM islands with invariant curves are observed.
Such curves act effectively as barriers that do not allow the flux of particles to pass through
them. Figure 3(a) shows the behaviour of the velocity as a function of iteration number. For
high energy, the velocity of the particle decreases linearly, and a linear fit yields a coefficient
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Figure 4. Stable regions in the phase space for the simplified dissipative model. The parameters
used were ε = 1 × 10−3 and δ = 1 × 10−5. The period-one stable fixed points are represented by
the dots and classified by the label i (i = 1, 2, 3, . . . , 10), as shown.

of −1.9990(7) × 10−5 as predicted by equation (8). The expanded region of figure 3(a)
illustrates the passage of the particle near to the invariant KAM curve delimiting the region
related to the fixed point given by equations (16), with i = 1, and (18). Figure 3(b) shows a
KAM curve (solid line) and the evolution of an initial condition near to the KAM curve (open
circles connected by a dotted line as a guide to the eye). For visual clarity, we have only
plotted every 4th point, i.e., between each two successive points connected by the dotted line
there are another three that were not plotted. The gap observed in the inset of figure 3(a) has
the same amplitude �V as observed in figure 3(b).

The stable regions for the simplified version of our model are shown in figure 4. As
expected, the KAM curves surround an elliptic fixed point that is represented as a dot in
figure 4. The parameters used in figure 4 were ε = 1 × 10−3 and δ = 1 × 10−5. For
this combination of control parameters, the period-one elliptic fixed points are stable for
i � 10. Moreover, outside these KAM curves, the particle behaves quite differently. We
have shown that, in the regime of high energy, the velocity of the particle decreases linearly
as iteration number increases. It passes around the stable KAM islands (see figure 3(b)) and
then wanders chaotically in the low energy domain for a number of iterations. However, in the
non-dissipative case, it is possible for the particle to have very low values of velocity within
the so-called chaotic sea. It can assume low values in this version of the model too but, for the
case where Vn � 2δ, the particle has insufficient energy to return to the wall for its next kick,
and it therefore comes to rest.

We now characterize this relaxation time for the simplified model in the low energy
domain. To do so, we will evaluate the time evolution of an ensemble of different initial
conditions in the regime of low energy. We will take different points uniformly distributed in
the chaotic sea for the non-dissipative case as initial conditions and then study their asymptotic
evolution in the dissipative case. However, as the drag force can cause some modifications
to the form of the phase space, it is possible for some regions of the chaotic sea in the non-
dissipative case to yield periodic or quasi-periodic behaviour in the dissipative version. If
we then take an initial condition that leads to periodic or even quasi-periodic behaviour in
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(a)

(b)

Figure 5. (a) Behaviour of the iteration number n̄x as a function of the ensemble of initial
conditions for the low energy region using δ = 2×10−7 in the simplified version of the dissipative
model. (b) The iteration number for the relaxation transient as a function of the parameter δ. The
error bars represent the standard deviation for the ensemble of initial conditions used.

the dissipative model, it is disregarded and a different initial condition is then considered.
Figure 5(a) shows the behaviour of the transient iteration number n̄x (i.e., the number of
iterations needed to bring the particle to rest) as a function of the number of initial conditions.
Figure 5(b) illustrates the behaviour of the average transient n̄x as a function of the strength of
the drag coefficient. The error bars represent the standard deviation of the relaxation transient
averaged over a set of 107 different initial conditions. These results allow us to describe the
transient as

n̄x ∝ δµ, (20)

where a power-law fit gives us the exponent µ = −0.973(5) ≈ −1, which seems to be
the same as that obtained in the complete model for a particle approaching the fixed point.
Note however that, as discussed in the previous section for a fixed point convergence (see
equation (9)), equation (20) diverges in the limit δ → 0. We can still conclude that in this
limit of δ and as a consequence of the divergence of n̄x , the dynamics for such a region is in
fact chaotic. It is also interesting to emphasize that all the invariant spanning curves are now
stable in the limit δ → 0, a result that, in a sense, limits the size of the chaotic sea.

We now discuss why the area-preserving property is not applicable over the whole phase
space of the simplified version of our model. We have shown that, for high energy, the velocity
of the particle decreases linearly as the iteration number evolves. This behaviour brings the
particle to the region where the chaotic transient is observed. However, as we have previously
discussed, the particle experiencing a chaotic transient may assume very low velocity values.
Moreover, the equations defining the map (see equation (10)) are restricted (defined for real



Effect of a frictional force on the Fermi–Ulam model 11411

numbers) to the condition Vn > 2δ. Thus, if the particle acquires a velocity Vn � 2δ, the
phase φn+1 is not defined as a real number, corresponding to the particle having insufficient
energy for a further collision. As an immediate consequence, the dynamics of the system is
over. Note however that the condition Vn � 2δ breaks down the property of area preservation,
since the map is undefined for that range of Vn. Moreover, for the stable KAM islands that
surround the elliptic fixed points (see figure 4), the particle does not assume these velocities
Vn � 2δ. Once within this region (KAM islands) for which the phase φ is real for all values
of the velocity, area preservation applies.

Let us now discuss this apparent paradox. The interested reader will be able to find
a specific example and a more complete discussion in [53]. First, we emphasize that
the definition of a dissipative system is not quite so clear as it seems at first sight. One
might say that ‘dissipative’ implies that the phase space volume is not conserved under time
evolution. Alternatively, one might say that ‘dissipative’ denotes that friction is present. In our
model however we have, by construction, a friction force present but, counter-intuitively, the
determinant of the Jacobian matrix is unity. Why does this result not contradict the statement
that there are no attractors in the model studied? The answer is related to the Poincaré
recurrence theorem. This theorem, which is also a consequence of the Liouville’s theorem,
states that for a bounded phase space, almost all trajectories eventually return arbitrarily close
to where they started. It is interesting to note that this result is true regardless of whether
the trajectory under consideration is regular or chaotic. Our results for high energy show
convincingly that the particle velocity decreases linearly as the iteration number increases.
Eventually, the particle enters the corresponding region of the chaotic sea (for the non-
dissipative case) and we observe that V → 0. Thus, it is easy to conclude that the time for
the next collision t → ∞, so that the phase space is unbounded. We also comment that in the
present dissipative version there is no mechanism for accelerating the particle to high energy
(say higher than Vc

∼= 2
√

ε/0.97 . . . , see [44]). Thus, the Poincaré recurrence argument is
not satisfied.

Finally, we point out that the coexistence of conservative and dissipative behaviour has
also been observed in a laser [54], where it was attributed to the occurrence of a symmetry-
breaking bifurcation, leading to the appearance of a structurally stable homoclinic cycle.

Before presenting our conclusions, we first comment on the comparisons of our results
with previous and well-known results in the literature. It is important to note that the kind
of dissipation used in the present paper acts as a bouncing ball, continuously bouncing
along. Such a dissipative force is contrary to the inelastic collisions that modify the ball’s
velocity only at the instant of the impact. Despite both kinds of damping often occuring in
nature, they have profound and different consequences in the dynamics of the bouncing ball
model. As an example, in [38, 39] and considering inelastic collisions, Tsang and Lieberman
considered the simplified FUM with inelastic impacts. They present evidence of contraction
on the phase space and, in particular, they have observed the presence of a strange attractor.
Recently, we have used a very similar version of the dissipative model [41], confirmed the
property of area contraction and in addition characterized a boundary crisis. A closely related
model, the gravitational bouncer model, was also considered under inelastic collisions. For
example, in [33] Holmes discusses the appearances of horseshoes in the inelastic bouncer and
gave an illustration of a homoclinic orbit in such a model. Four years later, Everson [35]
presents and discusses with many numerical simulations the appearance of period doubling
cascade again, the damping bouncer model. Period doubling cascade was also observed in
[34] for the completely inelastic collisions. The presence of frictional force however was
considered by Luna-Acosta [37] and Naylor, Sanchéz and Swift [36] in the bouncer model.
They too observed period doubling cascades and in particular Luna-Acosta [37] has achieved
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analytically dimensional reduction for the limit of high dissipation. It is worth stressing that
the above models do not present singularities in the mapping expressions as they appear in the
equations of our dissipative version. They appear as a consequence of the particle’s energy
being entirely dissipated by the damping force.

In the bouncer model, after the particle leaves the moving wall (the same procedure might
be applied in the simplified version), there is always a returning mechanism that brings the
particle for a next collision. Such a mechanism works even in the regime of high frictional
coefficient and it depends basically on the strength of the gravitational field. For inelastic
collisions, with the inelasticity settled in the moving wall, the completely inelastic case yields
the phenomenon of the locking regime [32]. In our model, however, depending on the region
of the phase space for both the complete and simplified versions, the particle reaches the
limit of V → 0 and then the returning mechanism stops working since collisions no longer
happen. Another point that must be emphasized is related to the canonical variables of the
model (see [3], chapter 3, section 3.4a). On the complete version, the extended phase space
is (V ,X,−E, t) and the canonical pairs are (−E, t) and (V ,X). Thus, the reason for not
observing the determinant of the Jacobian matrix being unity for γ → 0 in the complete model
is that the variables chosen on the description of the problem are not canonically conjugate.
On the simplified version however the canonical pair is (V , φ), thus such a pair of variables
leads to the recovery of the determinant of the Jacobian matrix to unity. Despite the phase
space of the model appearing to be very similar on the conservative case, the introduction
of frictional force proportional to the particle’s velocity drastically affects the regions of the
chaotic sea and invariant spanning curves, consequently destroying them. However the KAM
islands survive such a perturbation in the simplified version and turn them into attracting sinks
on the complete version. Moreover and as a final comment, even for different versions of the
model, our results for the transient time on the corresponding region of the chaotic sea for the
non-dissipative case, i.e. the number of iterations needed to bring the particle to rest, seem to
be described by a power law with the same exponent.

4. Conclusions

We have studied the FUM in the presence of a drag force, described by use of a two-dimensional
map obtained via the solution of differential equations. The complete version of the model
is area contracting and we have characterized the time evolution of the velocity in the regime
of high energy, where it seems to decrease linearly as the iteration number increases. In the
regime of low energy, the particle may be captured by an attracting region or can come to
rest once all its energy have been dissipated by the drag force. If the particle is captured
by an attracting region, it approaches the fixed point exponentially as the iteration number
increases. We show that the simplified model possesses some regions in its phase space
where the property of area preservation is observed, exhibiting the stable KAM islands. For
high energy, the behaviour of the velocity seems to be the same as in the complete model.
However, in the low energy regime, and outside the KAM islands, the particle relaxes via a
chaotic transient that depends on the strength of the drag coefficient.

Finally, we comment on the relationship between the simplified and full FUMs. It is well
known that the simplified version of the non-dissipative FUM yields qualitatively very similar
results to those obtained from the complete model. We have shown in this paper, however, that
in the presence of a drag force the simplified model yields results that are entirely different
from those of the complete version within certain regions of the phase space. In particular, the
simplified model possesses regions in its phase space where the property of area preservation
is observed, a result that does not arise in the complete version.
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Appendix

Solution of equation (1) for the given initial conditions and redefining the time as t → t − tn,
for t � tn, yield

vp(t) = vn e−ηt , (A.1)

where we have defined η = η′/m. Considering now vp(t) = dxp (t)/dt and using both the
initial conditions and equation (A.1), we obtain the position of the particle as

xp(t) = ε cos(ωtn) +
vn

η
[1 − e−ηt ]. (A.2)

Let us now discuss the different possibilities that may arise in our model. Depending on both
the initial velocity vn and initial time tn, they are as follows:

(a) The particle suffers another collision with the moving wall before exiting the collision
area. Such a collision will be referred to as a successive collision.

(b) The particle exits the collision area without suffering a further collision.

The collision area is defined as the interval x ∈ [−ε, ε] within which it is possible for the
particle to collide with the time-varying wall.

In case (a), the condition for observing successive collisions is obtained from xp(t) =
xw(t) for xp(t) � ε. This leads to the transcendental equation

g(tc) = ε cos[ω(tn + tc)] − ε cos(ωtn) − vn

η
[1 − e−ηtc ], (A.3)

where tc is the smallest root of equation (A.3) for tc ∈ (0, 2π/ω]. The same discussion of the
redefined time also holds here for tc. Note however that the time tc = 0 is excluded because
it is a fixed point of g(tc) = 0. The velocity immediately after the impact with the moving
wall is obtained from the requirement that energy and momentum in the frame of reference of
the moving wall are conserved. This procedure is needed because, at the moment of impact,
the moving wall can be considered to be instantaneously at rest. The new velocity is given by
vn+1 = −vn e−ηtc + 2vw(tn+1) where vw(t) = dxw(t)/dt = −εω sin(ωt). For such a successive
collision, the map is then written as

Tm :

{
vn+1 = −vn e−ηtc − 2εω sin(ωtn+1)

tn+1 = tn + tc.
(A.4)

The index ‘m’ denotes that the mapping describes multiple (collisions) with the moving wall.
If g(tc) does not have a solution for tc ∈ (0, 2π/ω] we may conclude that the particle leaves
the collision area without suffering a further collision, so that case (b) applies. Either of two
different things may then occur: (b1) the drag force dissipates part of the energy of the particle
and, after it hits the fixed wall and is reflected backwards, it suffers another collision with the
moving wall or (b2) the drag force dissipates all the energy of the particle. We now obtain the
equation for case (b1). Note, however, that case (b2) (dissipation of all the particle’s energy) is
completely encompassed by the equations obtained for (b1). After leaving the collision area,
the particle travels to the right, i.e. towards the fixed wall located at x = l, suffers an elastic
collision and is reflected back towards the moving wall. During this part of its trajectory,
both the velocity and position of the particle are described by equations (A.1) and (A.2). We
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thus need to evaluate the velocity of the particle and corresponding time immediately before
it re-enters the collision area. The time spent in this part of its trajectory is easily obtained by
evaluation of equation (A.2) taking into consideration that xp = 2l − ε. We then find that

tT = −1

η
ln

[
1 − η

vn

[2l − ε − ε cos(ωtn)]

]
. (A.5)

Equation (A.5) is real only if vn > η[2l − ε − ε cos(ωtn)]. For the condition vn �
η[2l − ε − ε cos(ωtn)] we can conclude that case (b2) occurs, i.e. the drag force has already
dissipated all of the energy of the particle. Consequently, the particle has come to rest. If
the velocity of the particle satisfies equation (A.5), then it re-enters the collision area and will
certainly suffer another collision with the moving wall. Its velocity for t = tT is obtained
from equation (A.1) taking the negative direction because the particle has been reflected by
the fixed wall located at x = l. It is given by

vp(tT ) = −vn + 2ηl − ηε[1 + cos(ωtn)]. (A.6)

The time at which the particle suffers a collision with the moving wall is obtained from
condition xp(tn + tT + t) = xw(tn + tT + t). It then leads to the following transcendental
equation:

f (tc) = ε cos[ω(tn + tT + tc)] − ε − (1 − e−ηtc )

[
vp(tT )

η

]
, (A.7)

where tc is the smallest solution of f (tc) for tc ∈ [0, 2π/ω]. The map is then written as

Ts :

{
vn+1 = −vp(tT ) e−ηtc − 2εω sin(ωtn+1)

tn+1 = tn + tT + tc.
(A.8)

The index ‘s’ denotes single collisions with the time-varying wall.
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